flag怎么读(flags怎么读)

简介:本文是一个 v8 编译原理知识的介绍文章,旨在让大家感性的了解 JavaScript 在 V8 中的解析过程。

flag怎么读(flags怎么读)

作者 | 子弈
来源 | 阿里技术公众号

一 简介

本文是一个 V8 编译原理知识的介绍文章,旨在让大家感性的了解 JavaScript 在 V8 中的解析过程。本文主要的撰写流程如下:

解释器和编译器:计算机编译原理的基础知识介绍V8 的编译原理:基于计算机编译原理的知识,了解 V8 对于 JavaScript 的解析流程V8 的运行时表现:结合 V8 的编译原理,实践 V8 在解析流程中的具体运行表现

本文仅代表个人观点,文中若有错误欢迎指正。

二 解释器和编译器

大家可能一直疑惑的问题:JavaScript 是一门解释型语言吗?要了解这个问题,首先需要初步了解什么是解释器和编译器以及它们的特点是什么。

1 解释器

解释器的作用是将某种语言编写的源程序作为输入,将该源程序执行的结果作为输出,例如 Perl、Scheme、APL 等都是使用解释器进行转换执行:

flag怎么读(flags怎么读)

2 编译器

编译器的设计是一个非常庞大和复杂的软件系统设计,在真正设计的时候需要解决两个相对重要的问题:

如何分析不同高级程序语言设计的源程序如何将源程序的功能等价映射到不同指令系统的目标机器flag怎么读(flags怎么读)

中间表示(IR)

中间表示(Intermediate Representation,IR)是程序结构的一种表现方式,它会比抽象语法树(Abstract Syntax Tree,AST)更加接近汇编语言或者指令集,同时也会保留源程序中的一些高级信息,具体作用包括:

易于编译器的错误调试,容易识别是 IR 之前的前端还是之后的后端出的问题可以使得编译器的职责更加分离,源程序的编译更多关注如何转换成 IR,而不是去适配不同的指令集IR 更加接近指令集,从而相对于源码可以更加节省内存空间flag怎么读(flags怎么读)

优化编译器

IR 本身可以做到多趟迭代从而优化源程序,在每一趟迭代的过程中可以研究代码并记录优化的细节,方便后续的迭代查找并利用这些优化信息,最终可以高效输出更优的目标程序:

flag怎么读(flags怎么读)

优化器可以对 IR 进行一趟或者多趟处理,从而生成更快执行速度或者更小体积的目标程序(例如找到循环中不变的计算并对其进行优化从而减少运算次数),也可能用于产生更少异常或者更低功耗的目标程序。除此之外,前端和后端内部还可以细分为多个处理步骤,具体如下图所示:

flag怎么读(flags怎么读)

3 两者的特性比较

解释器和编译器的具体特性比较如下所示:

flag怎么读(flags怎么读)

需要注意早期的 Web 前端要求页面的启动速度快,因此采用解释执行的方式,但是页面在运行的过程中性能相对较低。为了解决这个问题,需要在运行时对 JavaScript 代码进行优化,因此在 JavaScript 的解析引擎中引入了 JIT 技术。

4 JIT 编译技术

JIT (Just In Time)编译器是一种动态编译技术,相对于传统编译器而言,最大的区别在于编译时和运行时不分离,是一种在运行的过程中对代码进行动态编译的技术。

flag怎么读(flags怎么读)

5 混合动态编译技术

为了解决 JavaScript 在运行时性能较慢的问题,可以通过引入 JIT 技术,并采用混合动态编译的方式来提升 JavaScript 的运行性能,具体思路如下所示:

flag怎么读(flags怎么读)

采用上述编译框架后,可以使得 JavaScript 语言:

启动速度快:在 JavaScript 启动的时候采用解释执行的方式运行,利用了解释器启动速度快的特性运行性能高:在 JavaScript 运行的过程中可以对代码进行监控,从而使用 JIT 技术对代码进行编译优化

三 V8 的编译原理

V8 是一个开源的 JavaScript 虚拟机,目前主要用在 Chrome 浏览器(包括开源的 Chromium)以及 Node.js 中,核心功能是用于解析和执行 JavaScript 语言。为了解决早期 JavaScript 运行性能差的问题,V8 经历了多个历史的编译框架衍变之后(感兴趣的同学可以了解一下早期的 V8 编译框架设计),引入混合动态编译的技术来解决问题,具体详细的编译框架如下所示:

flag怎么读(flags怎么读)

1 Ignition 解释器

Ignition 的主要作用是将 AST 转换成 bytecode(字节码,中间表示)。在运行的过程中,还会使用类型反馈(TypeFeedback)技术并计算热点代码(HotSpot,重复被运行的代码,可以是方法也可以是循环体),最终交给 TurboFan 进行动态运行时的编译优化。Ignition 的解释执行流程如下所示:

flag怎么读(flags怎么读)

在字节码解释执行的过程中,会将需要进行性能优化的运行时信息指向对应的 Feedback Vector(反馈向量,之前也被称为 Type Feedback Vector),Feeback Vector 中会包含根据内联缓存(Inline Cache,IC)来存储的多种类型的插槽(Feedback Vector Slot)信息,例如 BinaryOp 插槽(二进制操作结果的数据类型)、Invocation Count(函数的调用次数)以及 Optimized Code 信息等。

这里不会过多讲解每个执行流程的细节问题。

2 TurboFan 优化编译器

TurboFan 利用了 JIT 编译技术,主要作用是对 JavaScript 代码进行运行时编译优化,具体的流程如下所示:

flag怎么读(flags怎么读)

图片出处 An Introduction to Speculative Optimization in V8。

需要注意 Profiling Feedback 部分,这里主要提供 Ignition 解释执行过程中生成的运行时反馈向量信息 Feedback Vector ,Turbofan 会结合字节码以及反馈向量信息生成图示(数据结构中的图结构),并将图传递给前端部分,之后会根据反馈向量信息对代码进行优化和去优化。

这里的去优化是指让代码回退到 Ignition 进行解释执行,去优化本质是因为机器码已经不能满足运行诉求,例如一个变量从 string 类型转变成 number 类型,机器码编译的是 string 类型,此时已经无法再满足运行诉求,因此 V8 会执行去优化动作,将代码回退到 Ignition 进行解释执行。

四 V8 的运行时表现

在了解 V8 的编译原理之后,接下来需要使用 V8 的调试工具来具体查看 JavaScript 的编译和运行信息,从而加深我们对 V8 的编译过程认知。

1 D8 调试工具

如果想了解 JavaScript 在 V8 中的编译时和运行时信息,可以使用调试工具 D8。D8 是 V8 引擎的命令行 shell,可以查看 AST 生成、中间代码 ByteCode、优化代码、反优化代码、优化编译器的统计数据、代码的 GC 等信息。D8 的安装方式有很多,如下所示:

方法一:根据 V8 官方文档 Using d8 以及 Building V8 with GN 进行工具链的下载和编译方法二:使用别人已经编译好的 D8 工具,可能版本会有滞后性,例如 Mac 版方法三:使用 JavaScript 引擎版本管理工具,例如 jsvu,可以下载到最新编译好的 JavaScript 引擎

本文使用方法三安装 v8-debug 工具,安装完成后执行 v8-debug –help 可以查看有哪些命令:

# 执行 help 命令查看支持的参数
v8-debug --help

Synopsis:
shell [options] [--shell] [<file>...]
d8 [options] [-e <string>] [--shell] [[--module|--web-snapshot] <file>...]

-e execute a string in V8
--shell run an interactive JavaScript shell
--module execute a file as a JavaScript module
--web-snapshot execute a file as a web snapshot

SSE3=1 SSSE3=1 SSE4_1=1 SSE4_2=1 SAHF=1 AVX=1 AVX2=1 FMA3=1 BMI1=1 BMI2=1 LZCNT=1 POPCNT=1 ATOM=0
The following syntax for options is accepted (both '-' and '--' are ok):
--flag (bool flags only)
--no-flag (bool flags only)
--flag=value (non-bool flags only, no spaces around '=')
--flag value (non-bool flags only)
-- (captures all remaining args in JavaScript)

Options:
# 打印生成的字节码
--print-bytecode (print Bytecode generated by ignition interpreter)
type: bool default: --noprint-bytecode

# 跟踪被优化的信息
--trace-opt (trace optimized compilation)
type: bool default: --notrace-opt
--trace-opt-verbose (extra verbose optimized compilation tracing)
type: bool default: --notrace-opt-verbose
--trace-opt-stats (trace optimized compilation statistics)
type: bool default: --notrace-opt-stats

# 跟踪去优化的信息
--trace-deopt (trace deoptimization)
type: bool default: --notrace-deopt
--log-deopt (log deoptimization)
type: bool default: --nolog-deopt
--trace-deopt-verbose (extra verbose deoptimization tracing)
type: bool default: --notrace-deopt-verbose
--print-deopt-stress (print number of possible deopt points)

# 查看编译生成的 AST
--print-ast (print source AST)
type: bool default: --noprint-ast

# 查看编译生成的代码
--print-code (print generated code)
type: bool default: --noprint-code

# 查看优化后的代码
--print-opt-code (print optimized code)
type: bool default: --noprint-opt-code

# 允许在源代码中使用 V8 提供的原生 API 语法
--allow-natives-syntax (allow natives syntax)
type: bool default: --noallow-natives-syntax

2 生成 AST

我们编写一个 index.js 文件,在文件中写入 JavaScript 代码,执行一个简单的 add 函数:

Function add(x, y) {
RETURN x + y
}

console.log(add(1, 2));

使用 –print-ast 参数可以打印 add 函数的 AST 信息:

v8-debug --print-ast ./index.js

[generating bytecode for function: ]
--- AST ---
FUNC at 0
. KIND 0
. LITERAL ID 0
. SUSPEND COUNT 0
. NAME ""
. INFERRED NAME ""
. DECLS
. . FUNCTION "add" = function add
. EXPRESSION STATEMENT at 41
. . ASSIGN at -1
. . . VAR PROXY local[0] (0x7fb8c080e630) (mode = TEMPORARY, assigned = true) ".result"
. . . CALL
. . . . PROPERTY at 49
. . . . . VAR PROXY unallocated (0x7fb8c080e6f0) (mode = DYNAMIC_GLOBAL, assigned = false) "console"
. . . . . NAME log
. . . . CALL
. . . . . VAR PROXY unallocated (0x7fb8c080e470) (mode = VAR, assigned = true) "add"
. . . . . LITERAL 1
. . . . . LITERAL 2
. RETURN at -1
. . VAR PROXY local[0] (0x7fb8c080e630) (mode = TEMPORARY, assigned = true) ".result"

[generating bytecode for function: add]
--- AST ---
FUNC at 12
. KIND 0
. LITERAL ID 1
. SUSPEND COUNT 0
. NAME "add"
. PARAMS
. . VAR (0x7fb8c080e4d8) (mode = VAR, assigned = false) "x"
. . VAR (0x7fb8c080e580) (mode = VAR, assigned = false) "y"
. DECLS
. . VARIABLE (0x7fb8c080e4d8) (mode = VAR, assigned = false) "x"
. . VARIABLE (0x7fb8c080e580) (mode = VAR, assigned = false) "y"
. RETURN at 25
. . ADD at 34
. . . VAR PROXY parameter[0] (0x7fb8c080e4d8) (mode = VAR, assigned = false) "x"
. . . VAR PROXY parameter[1] (0x7fb8c080e580) (mode = VAR, assigned = false) "y"

我们以图形化的方式来描述生成的 AST 树:

flag怎么读(flags怎么读)

VAR PROXY 节点在真正的分析阶段会连接到对应地址的 VAR 节点。

3 生成字节码

AST 会经过 Ignition 解释器的 BytecodeGenerator 函数生成字节码(中间表示),我们可以通过 –print-bytecode 参数来打印字节码信息:

v8-debug --print-bytecode ./index.js

[generated bytecode for function: (0x3ab2082933f5 <SharedFunctionInfo>)]
Bytecode length: 43
Parameter count 1
Register count 6
Frame size 48
OSR nesting level: 0
Bytecode Age: 0
0x3ab2082934be @ 0 : 13 00 LdaConstant [0]
0x3ab2082934c0 @ 2 : c3 Star1
0x3ab2082934c1 @ 3 : 19 fe f8 Mov <closure>, r2
0x3ab2082934c4 @ 6 : 65 52 01 f9 02 CallRuntime [DeclareGlobals], r1-r2
0x3ab2082934c9 @ 11 : 21 01 00 LdaGlobal [1], [0]
0x3ab2082934cc @ 14 : c2 Star2
0x3ab2082934cd @ 15 : 2d f8 02 02 LdaNamedProperty r2, [2], [2]
0x3ab2082934d1 @ 19 : c3 Star1
0x3ab2082934d2 @ 20 : 21 03 04 LdaGlobal [3], [4]
0x3ab2082934d5 @ 23 : c1 Star3
0x3ab2082934d6 @ 24 : 0d 01 LdaSmi [1]
0x3ab2082934d8 @ 26 : c0 Star4
0x3ab2082934d9 @ 27 : 0d 02 LdaSmi [2]
0x3ab2082934db @ 29 : bf Star5
0x3ab2082934dc @ 30 : 63 f7 f6 f5 06 CallUndefinedReceiver2 r3, r4, r5, [6]
0x3ab2082934e1 @ 35 : c1 Star3
0x3ab2082934e2 @ 36 : 5e f9 f8 f7 08 CallProperty1 r1, r2, r3, [8]
0x3ab2082934e7 @ 41 : c4 Star0
0x3ab2082934e8 @ 42 : a9 Return
Constant pool (size = 4)
0x3ab208293485: [FixedArray] in OldSpace
- map: 0x3ab208002205 <Map>
- length: 4
0: 0x3ab20829343d <FixedArray[2]>
1: 0x3ab208202741 <String[7]: #console>
2: 0x3ab20820278d <String[3]: #log>
3: 0x3ab208003f09 <String[3]: #add>
Handler Table (size = 0)
Source Position Table (size = 0)
[generated bytecode for function: add (0x3ab20829344d <SharedFunctionInfo add>)]
Bytecode length: 6
// 接受 3 个参数, 1 个隐式的 this,以及显式的 x 和 y
Parameter count 3
Register count 0
// 不需要局部变量,因此帧大小为 0
Frame size 0
OSR nesting level: 0
Bytecode Age: 0
0x3ab2082935f6 @ 0 : 0b 04 Ldar a1
0x3ab2082935f8 @ 2 : 39 03 00 Add a0, [0]
0x3ab2082935fb @ 5 : a9 Return
Constant pool (size = 0)
Handler Table (size = 0)
Source Position Table (size = 0)

add 函数主要包含以下 3 个字节码序列:

// Load Accumulator Register
// 加载寄存器 a1 的值到累加器中
Ldar a1
// 读取寄存器 a0 的值并累加到累加器中,相加之后的结果会继续放在累加器中
// [0] 指向 Feedback Vector Slot,Ignition 会收集值的分析信息,为后续的 TurboFan 优化做准备
Add a0, [0]
// 转交控制权给调用者,并返回累加器中的值
Return

这里 Ignition 的解释执行这些字节码采用的是一地址指令结构的寄存器架构。

关于更多字节码的信息可查看 Understanding V8’s Bytecode。

4 优化和去优化

JavaScript 是弱类型语言,不会像强类型语言那样需要限定函数调用的形参数据类型,而是可以非常灵活的传入各种类型的参数进行处理,如下所示:

function add(x, y) {
// + 操作符是 JavaScript 中非常复杂的一个操作
return x + y
}

add(1, 2);
add('1', 2);
add(, 2);
add(undefined, 2);
add([], 2);
add({}, 2);
add([], {});

为了可以进行 + 操作符运算,在底层执行的时候往往需要调用很多 API,比如 ToPrimitive(判断是否是对象)、ToString、ToNumber 等,将传入的参数进行符合 + 操作符的数据转换处理。

在这里 V8 会对 JavaScript 像强类型语言那样对形参 x 和 y 进行推测,这样就可以在运行的过程中排除一些副作用分支代码,同时这里也会预测代码不会抛出异常,因此可以对代码进行优化,从而达到最高的运行性能。在 Ignition 中通过字节码来收集反馈信息(Feedback Vector),如下所示:

flag怎么读(flags怎么读)

为了查看 add 函数的运行时反馈信息,我们可以通过 V8 提供的 Native API 来打印 add 函数的运行时信息,具体如下所示:

function add(x, y) {
return x + y
}

// 注意这里默认采用了 ClosureFeedbackCellArray,为了查看效果,强制开启 FeedbackVector
// 更多信息查看: A lighter V8:https://v8.dev/blog/v8-lite
%EnsureFeedbackVectorForFunction(add);
add(1, 2);
// 打印 add 详细的运行时信息
%DebugPrint(add);

通过 –allow-natives-syntax 参数可以在 JavaScript 中调用 %DebugPrint 底层 Native API(更多 API 可以查看 V8 的 runtime.h 头文件):

点击链接查看原文V8 编译浅谈,关注公众号【阿里技术】获取更多福利!

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

本文来自迎天投稿,不代表胡巴网立场,如若转载,请注明出处:https://www.hu85.com/335710.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 xxxxx@qq.com 举报,一经查实,本站将立刻删除。